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Abstract

In this paper we describe tl, e eaietlsion of the CAPO

parallelization support tool to support multilevel

parallelism based on OpenMP directives. CAPO

generates OpenMP directives with extensions

supported by tile NanosCompiler t,, allow for directive
nesting and definition of thread g r,,ups. We report first

results for several benchmark _odes and one full

application that have been par, d/elized using our

system.

1 Introduction

Parallel architectures are an inst umental tool for the

execution of computational intt:nsive applications.

Simple and powerful programming models and envi-
ronments are required to develop a_d tune such parallel
applications. Current programming, models offer either

library-based implementations (such as MPI [16]) or
extensions to sequential languages (directives and lan-

guage constructs) that express the available parallelism
in the application, such as OpenMl' [ 19].

OpenMP was introduced as aE. industrial standard
for shared-memory programming with directives. Re-

cently, it has gained significant popularity and wide
compiler support. However, relevant performance is-
sues must still be addressed which concern

programming model design as well as implementation.
In addition to that, extensions to tie standard are being

proposed and evaluated in order t,_ widen the applica-
bility of OpenMP to a broad class of parallel

applications without sacrificing po_ tability and simplic-
ity.

What has not been clearly addressed in OpenMP is

the exploitation of multiple levels parallelism. The lack
of compilers that are able to explo,t further parallelism

inside a parallel region has been tte main cause of this
problem, which has favored the p_actice of combining

several programming models to address scalability of
applications to exploit multiple lexels of parallelism on

a large number of prc_cessnrs. Th: nesting of parallel
constructs in OpenMP is a featurt that requires atten-

tion in future releases of OpenMP compilers. Some

research platforms, such as the OpenMP NanosCom-

piler [9], have been developed to show the feasibility

of exploiting nested parallelism in OpenMP and to
serve as testbeds for new extensions in this direction.

The OpenMP NanosCompiler accepts Fortran-77 code

containing OpenMP directives and generates plain For-
tran-77 code with calls to the NthLib thread library

[17] (currently implemented for the SGI Origin). In

contrast to the SGI MP library, NthLib allows for mul-

tilevel parallel execution such that inner parallel
constructs are not being serialized. The NanosCompiler

programming model supports several extensions to the
OpenMP standard to allow the user to control the allo-
cation of work to the participating threads. By

supporting nested OpenMP directives the NanosCom-

piler offers a convenient way to multilevel parallelism.

In this study, we have extended the automatic paral-
lelization tool, CAPO, to allow for the generation of

nested OpenMP parallel constructs in order to support
multilevel shared memory parallelization. CAPO
automates the insertion of OpenMP directives with

nominal user interaction to facilitate parallel process-

ing on shared memory parallel machines. It is based on
CAPTools [11], a semi-automatic parallelization tool
for the generation of message passing codes, developed

at the University of Greenwich.

To this point there is little reported experience with

shared memory multilevel parallelism. By being able
to generate nested directives automatically in a reason-
able amount of time we hope to be able to gain a better

understanding of performance issues and the needs of

application programs when in comes to exploiting mul-
tilevel parallelism.

The paper is organized as follows: Section 2 sum-
marizes the NanosCompiler extensions to the OpenMP
standard. Section 3 discusses the extension of CAPO to

generate multilevel parallel codes. Section 4 presents
case studies on several benchmark codes and one full

application.

*The author is an employee of Computer S, icnces Corporation



2 The NanosCompiler

OpenMP provides a fork-and-loin execution model

in which a program begins execution as a single proc-
ess or thread. This thread execute_ sequentially until a
PARALLEL construct is found. At this time, the thread

creates a team of threads and it becomes its master

thread. All threads execute the statements lexlcally

enclosed by the parallel construct. Work-sharing con-
structs (DO, SECTIONS and SIN 3LE) are provided to
divide the execution of the er,closed code region

among the members of a team. All threads are inde-
pendent and may synchronize at tae end of each work-

sharing construct or at specific points (specified by the
BARRIER directive). Exclusive e_-.ecution mode is also

possible through the definition of CRITICAL and
ORDERED regions. If a thread in a team encounters a
new PARALLEL construct, it creates a new team and it

becomes its master thread. Open,riP v2.0 provides the
NUM_THREADS clause to restrict the number of

threads that compose the team.
The NanosCompiler extensior to multilevel paral-

lelization is based on the concept of thread groups. A

group of threads is composed of a subset of the total
number of threads available in the team to run a paral-

lel construct. In a parallel constluct, the programmer

may define the number of groups and the composition
of each one. When a thread in the current team encoun-

ters a PARALLEL construct defining groups, the thread
creates a new team and it becomes its master thread.

The new team is composed of as many threads as the

number of groups. The rest of the threads is used to
support the execution of nested parallel constructs. In
other words, the definition of groups establishes an

allocation strategy for the inner ievels of parallelism.
To define groups of threads, the NanosCompiler sup-

ports the GROUPS clause extensi_m to the PARALLEL
directive.

C$OMP PARALLEL GROUPS (gspec)

C$OMP END PARALLEL

Different formats for the GRO[ PS clause argument

gspec are allowed [10]. The .,implest specifies the
number of groups and performs an equal partition of

the total number of threads to the __roups:

gspec = ngroups

The argument ngroups spectfies the number of

groups to be defined. This format assumes that work is
well balanced among groups and therefore all of them
receive the same number of tb,_ads to exploit inner

levels of parallelism. At runtime, the composition of

each group is determined by equally distributing the

available threads among the groups.

gspec = ngroups, weight

In this case, the user specifies the number of groups

(ngroups) and an integer vector (weight) indicat-

ing the relative weight of the computation that each

group has to perform. From this information and the
number of threads available in the team, the threads are

allocated to the groups at runtime. The vector weight

is allocated by the user and its values are computed
from information available within the application itself
(for instance iteration space, computational complex-

ity).

3 The CAPO Parallelization Support Tool

The main goal of developing parallelization sup-

port tools, is to eliminate as much of the tedious and
sometimes error-prone work that is needed for manual

parallelization of serial applications. With this in mind,
CAPO [13] was developed to automate the insertion of
OpenMP compiler directives with nominal user inter-
action. This is achieved largely by use of the very

accurate interprocedural analysis from CAPTools [l l]
and also benefits from a directive browser to allow the

user to examine and refine the directives automatically

placed within the code. CAPTools provides a fully
interprocedural and value-based dependence analysis

engine [14] and has successfully been used to parallel-
ize a number of mesh-based applications for distributed

memory machines.

3.1 Single level parallelization

The single loop level parallelism automatically ex-
ploited in CAPO can be defined by the following three

stages (see [13] for more details of these stages and
their implementation):

I) Identification of parallel loops and parallel re-

gions - this includes a comprehensive breakdown of
the different loop types, such as serial, parallel includ-

ing reductions, and pipelines. The outermost parallel
loops are considered for parallelization so long as they

provide sufficient granularity. Since the dependence
analysis is interprocedural, the parallel regions can be

defined as high up in the call tree as possible. This
provides an efficient placement of the directives.

2) Optimization of parallel regions and parallel

loops - the fork-and-join overhead (associated with
starting a parallel region) and the synchronizing cost

are greatly lowered by reducing the number of parallel



regionsrequired.Thisisachievedbymergingtogether
parallelregionswherethereisno_,iolationof dataus-
age. In addition,the synchr,_nizationbetween
successiveparallelloopsisremove,Jif it canbeproved
thattheloopscancorrectlyexecuteasynchronously
(usingtheNOWAITclause).

3) Code transformation and insertion of OpenMP
directives - this includes the search for and insertion of

possible THREADPRIVATE common blocks. There is

also special treatment for private variables in non-
threadprivate common blocks. If there is a usage con-
flict then the routine is cloned and the common block

variable is added to the argumen_ list of the cloned
routine. Finally, the call graph is traversed to place

OpenMP directives within the code. This includes the
identification of necessary varia!_le types, such as

SHARED, PRIVATE, and REDUCTfON.

3.2 Extension to multilevel paraUelization

Our extension to OpenMP muhilevel parallelism is

based on parallelism at different I_op nests. Multilevel

parallelism can also be exploited _Ath task parallelism
but this is not considered, partly b,;cause task parallel-

ism is not well defined in th,_ current OpenMP

specification. Currently, we limit _ur approach to only
two-level loop parallelism, which is of more practical

use. The approach to automaticaliy exploit two-level
parallelism is extended from the s ngle level paralleli-
zation and is illustrated in Figure 1. Besides the data

dependence analysis in the beginning he approach can
be summarized in the following foltr steps.

1) First-level loop analysis. Tt_is is essentially the
combination of the first two stage_ in the single level

parallelization where parallel loops and parallel regions
are identified and optimized at the outermost loop
level.

__...... Serial Code ....._

I Data Dependence Analysis [

First Level Loop Analysis I

Second Level Loop Analysis ]

I Second Level Directive Insertion ]

First Level Directive Insertion ]

'f Parallel Code

Figure h Steps in multilevel parallelization

2) Second-level loop analysis. This step involves

the identification of parallel loops and parallel regions
nested inside the parallel loops that were identified in

Step 1. These parallel loops and parallel regions are
then optimized as before but limited to the scope de-

fined by the first level.

3) Second-level directive insertion. This includes
code transformation and OpenMP directives insertion

for the second level. The step performed before insert-

ing any directives in the first-level is to ensure a
consistent picture is maintained for any variables and
codes that may be changed or introduced during the
code transformation.

4) First-level directive insertion. Lastly code trans-

formation and OpenMP directives insertion are

performed for the outer level parallelization. All the
transformations of the last stage of the single level par-

allelization are being performed, with the exception
that we disallow the THREADPRIVATE directive.

Compared to single level parallelization, the two-level

parallelization process requires the additional steps
indicated in the dash box in Figure 1.

3.3 Implementation consideration

In order to maintain consistency during the code
transformations that occur during the parallelization

process we need to update data dependencies properly.
Consider the example, where CAPO transforms an

array reduction into updates to a local variable. This is
followed by an update to the global array in a
CRITICAL section to work around the limitation on

reduction in OpenMP vl.x. The data dependence graph



needsto beupdatedto reflectthechangedueto this
transformation,suchasassociatingdependenceedges
relatedtotheoriginalvariabletoth,'_localvariableand
addingnewdependencesfortheIoc_1variable from the

local updates to the global update Perlbrming a lull
data dependence analysis for the rr,odified code block

is another possibility but this would not take advantage
of the information already obtaintd from the earlier

dependence analysis.

When nested parallel regions are considered, the
scope of the THREADPRIVATE directive is not clear

any more, since a variable may be tareadprivate for the
outer nest of parallel regions but shared for the inner
parallel regions, and the directive cannot be bound to a

specific nest level. The OpenMP specification does not

properly address this issue. Our solution is to disallow
the THREADPRIVATE directive w_en nested parallel-

ism is considered and treat an3 private variables
defined in common blocks by a sp,'cial transformation
as mentioned in Section 3.1.

The scope of the synchronizati( n directives should
be carefully followed. For example, the MASTER direc-
tive is not allowed in the extent of a PARALLEL DO.

This changes the way a software p_peline (see [13] for
further explanation) can be implemented if it is nested

inside an outer parallel loop.
When implementing a pipeline. 1he outer loop needs

to be considered as well. This is illustrated by the fol-
lowing example. Assume we hav,_ a nest containing
two loops:

DO K=I, NK

DO J=2, NJ

A(J,K) = A(J,K) + %(J-I,K)

The outer loop K is parallel and the inner loop J can be

set up with a pipeline. After inserting directives at the
second level to set up the pipeline, ,re have

1$OIP PARALLEL

DO K=I, NK

I..point-to-_oint Bync d_rective

,$o_ DO
DO J=2 ,NJ

A(J,K) = A(J,K) + _{J-I,K)

The implementation of the point-t_-point synchroniza-.
tion with directives is illustrated in Section 4.2. In

order to parallelize the K loop at the outer level, we
need to first transform the loop into a form such that
the outer-level directives can be a, ided. It is achieved

by explicitly calculating the /<-h_p bound for each

outer-level thread as shown in the f _llowing codes:

I $OMP PARALLEL DO GROUPS (ngrou])s)

DO IT=I, on__get_num_t breads ( )

CALL calc bound (IT, [, NK,

> low, high )

!$OMP PARALLEL

DO K=low, hioh

!..point-to-point sync directive

$OMP DO

DO J=2, NJ

A(J,K) = A(J,K) + A(J-I,K)

The function "calc_bound" calculates the K loop
bound (low, high) for a given IT (the thread num-
ber) from the original K loop limit. Only then are the

first-level directives added to the IT loop (instead of

the K loop). The method is not as elegant as one would
prefer, but it points to some of the limitations with the

nested OpenMP directives. In particular we would not

be able to set up a two-dimensional pipeline, since it
would involve synchronization of threads from two

different nest levels. We will discuss the problem of
two-dimensional pipelining in one of our case studies
in Section 4.2.

One of the contributions by the NanosCompiler to
support nested directives is the GROUPS clause, which

can be used to define the number of thread groups to be
created at the beginning of an outer-nest parallel re-

gion. In our implementation, the GROUPS directive
containing a single shared variable 'ngroups' is gen-

erated for all the first-level parallel regions. The
ngroups variable is placed in a common block and

can be defined by the user at run time. Although it
would be better to generate the GROUPS clause with a
weight argument based on different workloads of

parallel regions, this is not considered at the moment.

4 Case Studies

In this section we show examples for successful and

not so successful automatic mulitlevel parallelization.
We have parallelized the three application benchmarks
(BT, SP, and LU) from the NAS Parallel Benchmarks

[4] and the ARC3D [21] application code using the
CAPO multilevel parailelization feature and examined
its effectiveness.

In each of our experiments we generate nested

OpenMP directives and use the NanosCompiler for
compilation and building of the executables. As dis-

cussed in Sections 2 and 3, the nested parallel code
contains the GROUPS clause at the outer level. Accord-

ing to the OpenMP standard, the number of executing
threads can be specified at runtime by the environment
variable OMP_NUM_THREADS. We introduce the envi-

ronment variable NANOS_GROUPS and modify the
source code to have the main routine check the value

of this variable and set the argument to the GROUPS
clause accordingly. This allows us to run the same ex-

ecutable not only with different numbers of threads,

but also with different numbers of groups. We compare

4



thetimingsfor differentnumbersof groups to each
other. Note that single level parallelization of the outer

loop corresponds to the case that the number of execut-
ing threads is equal to the number _f groups, i.e. there

is only one thread in each group. We compare these

timings to those resulting from c_mpilation with the
native SGI compiler, which supp_>rts only the single

level OpenMP parallelization and _erializes inner par-
allel loops.

The timings were obtained on an SGI Origin 2000
with RI2000 CPUs, 400MHz clocl,, and 768MB local

memory per node.

4.1 Successful multilevel parallelization: the
BT and SP benchmarks

The NAS Parallel Benchmarks BT and SP are both

simulated CFD applications with a similar structure.
They use an implicit algorithm to solve the 3D com-

pressible Navier-Stokes equations The x, y, and z
dimensions are decoupled by usag_ of an Alternating

Direction Implicit (ADI) factorizatton method. In BT,
the resulting systems are block-trtdiagonal with 5x5

blocks. The systems are solved sequentially along each
dimension. SP uses a diagonalization method that de-

couples each block-tridiagonal _ystem into three
independent scalar pentadiagonal systems that are
solved sequentially along each dim(_nsion.

A study about the effects of s:lgle level OpenMP
parallelization of the NAS Parallel Benchmarks can be

found in [12]. In our experiments we started out with
the same serial implementation of the codes that was

the basis for the single level OpenVIP implementation

as described in [12]. We ran class A (64x64x64 grid
points), B (102x102x102 grid points), and C
(162x162x 162 grid points) for the BT and SP bench-

marks. As an example we show t_mings for problem
class A for both benchmarks in Fi_,lre 2.
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Figure 2: Timing results for class A benchmarks.

The programs compiled with the SGI OpenMP
compiler scale reasonably well up to 64 threads, but do

not show any further speed-up if more threads are be-
ing used. For a small number of threads (up to 64), the

outer level parallel code generated by the Nanos Com-
piler runs somewhat slower than the code generated by
the SGI compiler, but its relative performance im-

proves with increasing number of threads. When

increasing from 64 to 128 threads, the multilevel paral-
lel code still shows a speed-up, provided the number of
groups is chosen in an optimal way. We observed a
speed-up of up to 85% for 128 threads. In Figure 3 we

show the speed-up resulting from nested parallelization
for three problem classes of the SP and BT bench-

marks. We denote by

• SGI OpenMP: the time for outer loop paralleli-

zation using just the native SGI compiler,

• Nanos Outer: the time for outer loop paralleliza-
tion using the NanosCompiler,

• Nanos Minimal: the minimal time for nested

parallelization using the NanosCompiler.

For the BT benchmark CAPO parallelized 28 loops,
13 of which were suitable for nested parallelization.



FortheSPbenchmarkCAPOparalelized31loops,17
of whichweresuitablefor multilevelparallelism.In
bothbenchmarksthemosttimeconsumingloopsare
parallelizedintwodimensions.All ofthenestedparal-
lel loopsareatleasttriplenested.Thestructureof the
loopsissuchthatthetwooutermostloopscanbepar-
allelized.Theinnerparallelloops,incloseoneormore
innerloopsandcontainareasona'flylargeamountof
computationalwork.

Thereasonthatmultilevelparallelismhasapositive
effectontheperformanceof theseloopsismainlydue
to thefactthatloadbalancingbe;weenthethreadsis
improved.ForclassA, forexample,henumberof it-
erationsis 62.If onlytheouterloopis parallelized,
usingmorethan62threadswill rot improvetheper-
formanceanyfurther.In thecaseof 64threads,2 of
themwill beidling.If, however,lhesecondlooplevel
is alsoparallelized,all 64thread,_canbeputto use.
Ourexperimentsshowthatbych(_osingthenumberof
groupstoosmall,theperforman,'ewill actuallyde-
crease.Settingthenumberof gn,upsto 1effectively
movestheparallelismcompletel_to theinnerloop,
whichwill inmostcasesbelessetficientthanparallel-
izingtheouterloop.

InTable1weshowthemaxim.dandminimalnum-
berof iterations(forclassA) oftheinnerparallelloop
thatathreadhastoexecute,depe_dingonthenumber
ofgroups.

#Groups
64

Max # Iters Min # Iters

62 0

32 62 31

16 64 45

8 64 49

4 164 .. 45

Table 1: Thread workload for the class A prob-
lems BT and SP.

To give a flavor of how the per_0rmance of the mul-
tilevel parallel code depends on thv grouping of threads

we show timings for the BT benchmark on 64 threads
and varying number of groups in I igure 4. The timings

indicate that good criteria to ch,g)se the number of

groups are:

• Efficient granularity of the parallelism, i.e., the

number of groups has to be _ufficiently small. In
our experiments we observ_ that the number of

groups should not be smalle than the number of
threads within a group.

The number of groups has to be large enough to

ensure a good balancing of work among the
threads.

BT Benchmad( with 64 Threads

I
I 1 _ O5411

I°, t__1 1-q tl F

Oonehm an_ Old

Figure 4: Timings of BT with varying number of

thread groups.

4.2 The need for OpenMP extensions: the LU

benchmark

The LU application benchmark is a simulated CFD

application that uses the symmetric successive over-
relaxation (SSOR) method to solve a seven band
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Figure 3: Speed-up due to nested parallelism.



block-diagonal system resulting fr:_m finite-difference

discretization of the 3D compressible Navier-Stokes

equations by splitting it into block lower and block

upper triangular systems.

As starting point for our tests ,re choose the pipe-

lined implementation of the parallel SSOR algorithm,

as described in [12]. The example below shows the

loop structure of the lower-triangular solver in SSOR.

The lower-triangular and diagonal systems are formed

in routine JACLD and solved in routine BLTS. The

index K corresponds to the third coordinate direction.

• • •

DO K = KST, KEND

CALL JACLD (K)

CALL BLTS (K)

END DO

SUBROUTINE BLTS

DO J = JST, JEND

Loop_Body (J,K)

END DO

RETURN

END

To set up a pipeline for the _uter loop, thread 0

starts to work on its first chunk ol data in K direction.

Once thread 0 finishes, thread 1 t an start working on

its chunk for the same K and, in th,: meantime, thread 0

moves on to the next K. CAPO delects such opportuni-

ties for pipelined parallelism. The directives generated

by CAPO to implement the pipeli_le for the outer loop

are shown in Figure 5.

I$0_ PARALLW-L PRIVATE (K, i_m, mlmmt )

iam = omp_get_thread_num( )

numt = omp_get_num_threads ( )

isync (iam) = 0

'$OMP BARRIER
DO K = KST, KEND

CALL JACLD (K)

CALL BLTS (K)

END DO

I $OMP END PARALLEL
SUBROUTINE BLTS (K)

if (iam .gt. 0 .and.
iam .it. numt) then

do while(isync(iam-l) .eq. 0)

! $OMP FLUSH(isync)
end do

isync(iam-l) = 0

! $OMP FLUSH(isync)
end i f

!$OMP DO
DO J : JST, JEND

Loop_Body (J, K)
END DO

:$OMP END DO nowait
if (iam .it. numt) then

do while (isync(iam) .eq. i)

!$OMP FLUSH (isync )
end do

isync (iam) = 1

!$OMP FLUSH (isync )
endi f

RETURN

END

Figure 5: The one-dimensional parallel pipeline

implemented in LU.

The K loop is placed inside a parallel region. Two

OpenMP library functions are called to obtain the cur-
rent thi'ead identifier (iam) and the total number of

threads (numt). The shared array £sync is used to

indicate the availability of data from neighboring

threads. Together with the FLUSH directive in a

WHILE loop it is used to set up the point-to-point syn-
chronization between threads. The first WHILE

ensures that thread iam will not start with its slice of

the J loop before the previous thread has updated its

data. The second WHILE is used to signal data avail-

ability to the next thread.

The performance of the pipelined parallel imple-
mentation of the LU benchmark is discussed in [12].

The timings show that the directive based implementa-
tion does not scale as well as a message passing

implementation of the same algorithm. The cost of

pipelining results mainly from wait during startup and

finishing. The message-passing version employs a 2

dimensional pipeline where the wait cost can be greatly



reduced. The use of nested OpenMP directives offers

the potential to achieve similar scalability to the mes-
sage passing implementation.

There is, however, a problem in setting up a direc-

tive-based two-dimensional pipeline. The structure of

the Loop_Body depicted in Figure _ looks like:

DO I = ILOW, IHIGH

DOM= i, 5

TV(M,I,J)= V(M,I,_ ,K-l)

+ V(M, I,J-I,K)

+ V(M, I-I,J,K)

END DO

DOM= I, 5

V(M,I,J,K)= TV(M,_ ,J)

END DO

END DO

If both J- and I-loop are to be paTallelized employing

pipelines, a thread would need to be able to synchro-
nize with its neighbor in the J- and I-directions on
different nesting levels. Parallelizing the I-loop with

OpenMP directives introduces an inner parallel region,
as shown below (see also the discu ;sion in Section 3.3)

! $OMP PARALLEL
synchroni za tionl

'$OMP DO
DO JT = ...

!$OMI• PARALLEL _--

DO J = JLOW, JHIGH

Synchroni za tion2

'.$OMP DO
DO I = ILOW, IHIGH

END DO

I$OMP END IX) NOWAIT

Synchroni za tion2
END DO

,So_ END P_LZL <-
END DO

! $OMP END DO NOWAIT

syn chron iza tion I

The end of the inner parallel regi( n forces the threads

to join and destroys the multilevel ._ipeline mechanism.
In order to set up a 2-dimensionai pipeline we would

need to have the possibility of ne:;ted Ol,tp I30 direc-
tives within the same par_llel region. The

NanosCompiler team is currently implementing

OpenMP extensions to address this problem. A brief
overview on this work is given in _ection 6.

4.3 Unsuitable loop structure in ARC3D

ARC3D uses an implicit scheme to solve Euler and

Navier-Stokes equations in a three-dimensional (3D)

rectilinear grid. The main component is an ADI solver,
which results from the approximate factorization of

finite difference equations. The actual implementation
of the ADI solver (subroutine STEPF3D) in the serial

ARC3D is illustrated in Figure 6. It is very similar to
the SP benchmark.

[ Bc
I

I RHS
I

FILTER3D
1

I
I XI solver

I

I NPINV

'I ETA solver
I

I

I ZETA solver _I TK I

I

I update solutionl I

H Boundary Condition

--_ Explicit Right-Hand-Side

-----t Artificial Dissipation Terms

(X) For each L:
form LHS for (J,K) plane
VPENTA3 -- solve first 3
VPENTA -- solve 4 & 5

(Y) For each L:
form LHS for (K,J) plane
VPENTA3 -- solve first 3

VPENTA -- solve 4 & 5

(Z) For each K:

form LHS for (L,J) plane
VPENTA3 -- solve first 3
VPENTA -- solve 4 & 5

Figure 6: The schematic flowchart of the ADI
solver in ARC3D.

For each time step, the solver first sets up boundary

conditions (BC), forms the explicit right-hand-side
(RHS) with artificial dissipation terms (FILTER3D),

and then sweeps through three directions (X, Y and Z)
to update the 5-element fields, separately. Each sweep

consists of forming and solving a series of scalar pen-

tadiagonal systems in a two-dimensional plane one at a
time. Two-dimensional arrays are created from the 3D
fields and are passed into the pentadiagonal solvers
(VPENTA3 for the first 3 elements and VPENTA for

the 4 and 5th elements, both originally written for vec-

tor machines), which perform Gaussian eliminations.
The solutions are then copied back to the three-
dimensional residual fields. Between sweeps there are



routines (TKINV, NPINV and T_<) to calculate and

solve small, local 5x5 eigensystems. Finally the solu-

tion is updated for the current time step.

We ran ARC3D for two different problem sizes. In

both cases the performance droplzed by 10% to 70%

when the number of groups was smaller than the num-

ber of threads, i.e. when multilevel parallelism was

used. Example timings for both problem sizes and 64

threads are given in Figure 7. Tl,e timings for outer

level parallelism are given in Figur: 8.

Even though the time consumi,g solver in ARC3D

is similar to the one in the SP benchmark, our approach

to automatic multilevel parallelization was not success-

ful. For ARC3D CAPO identified 58 parallel loops, 35

of which were suitable for nested parallelization. 19 of

the 35 nested parallel loops had w:ry little work in the

inner parallel loop and inefficient memory access. An

example is shown below.

!$OMP PARALLEL DO GROUPS(ngroups)

!$OMP& PRIVATE(AR,BR, CR, DR, ER)

DO K = KLOW, KUP

!$OMP PARALLEL DO

DO L = 2, LM

DO J = 2, JM

AR(L,J) = AR(L,J

BR(L,J) = BR(L,J

CR(L,J) = CR(L,J

DR(L,J) = DR(L,J

ER(L,J) = ER(L,J

CR(L,J) = CR(L,J

END DO

END DO

END DO

+ V(J,K,L)

+ V(J,K,L)

+ V(J,K,L)

÷ V(J,K,L)

-+ V(J,K,L)

i.

Parallelizing the L loop increases ihe execution time of

the loop considerably due to a high number of cache

invalidations. The occurrence of many such loops in

the original ARC3D code nullifi,:s the benefits of a

better load balance and we see n(_ speed-up for multi-

level parallelism.

!

ARC3D Nested Parallelism Timings

EAx64J_4 194_194x194

Problem size

Figure 7: Timings of ARC3D with varying num-

ber of thread groups for a given total of 64 threads.

ARC3D Timings for Problem Size 19dx194x194

QSGI OpenMP

• Nanos Outer Loop

8 16 32 6.4 128

Number of threads

18

16

14

I '°-- 8

ARC3D nmings for Problem Size 64x64x64

&l SGI OpenMP

lNznor, Outlr Loop

4 8 16 32 64 128

Number of threads

Figure 8: Timings from the outer level paralleli-

zation of ARC3D.

The example of ARC3D shows that parallelizing all

loops in an application indiscriminately on two levels

with the same name number of groups and the same

weight for each group may actually increase the execu-



tion time. At the least we will need to extend the

CAPO directives browser to allo_ the user inspection

of all multilevel parallel loops ard possibly perform
code transformations or disable nested directives.

5 Related work

There are a number of comn_ercial and research

parallelizing compilers and tools that have been devel-
oped over the years. Some of the more notable ones

include Superb [24], Polaris [6], Suif [23] KAI's tool-
kit [15], VAST/Parallel [20], and FORGexplorer [1]

Regarding OpenMP directives, most current com-
mercial and research compilers mainly support the

exploitation of a single level of parallelism and special

cases of nested parallelism (e4',. double perfectly
nested loops as in the SGI MIPS;pro compiler). The

KAI/Intel compiler offers, througt_ a set of extensions
to OpenMP, work queues and an interface for inserting

application tasks before execution fWorkQueue pro-

posal [22]). At the research level, the Illinois--Intel
Multithreading library [7[ provides a similar approach
based on work queues. In both c_ses, there is no ex-

plicit (at the user or compiler le,,ell control over the
allocation of threads so they do n¢,t support the logical

clustering of threads in the multilevel structure, which
we think is necessary to allow go,_d work distribution

and data locality exploitation.

Compaq recently announced tt,e support of nested

parallel region by its Fortran compiler for Tru64 sys-
tems [3]. The Omni compiler [18]. which is part of the
Real World Computing Project, also supports nested

parallelism through OpenMP direc ives.

There are a number of papers r,_porting experiences

in combining multiple programming paradigms (such
as MPI and OpenMP) to exploit multiple levels of par-
allelism. However, there is not much experience in the

parallelization of applications with multiple levels of
parallelism simply using OpenMP. Implementation of

nested parallelism by means of c_ntrolling the alloca-
tion of processors to tasks in a single-level parallelism
environment is discussed in [5]. "Ihe authors show the

improvement due to nested parallelization.

Other experiences using nested OpenMP directives
with the NanosCompiler are repored in [2]. In the ex-

amples discussed there, the direclives have not been
automatically generated.

6 Project Status and Future Plans

We have extended the CAPO a_ltomatic paralleliza-

tion support tool to automatica!ly generate nested
OpenMP directives. We used tht NanosCompiler to

evaluate the efficiency of our approach. We conducted
several case studies which, showed that:

• Nested parallelization was useful to improve load

balancing.

• Nested parallelization can be counter productive

when applied without considering workload dis-
tribution and memory access within the loops.

• Extensions to the OpenMP standard are needed to

implement nested parallel pipelines.

We are planning to enhance the CAPO directives
browser to allow the user to view loops, which are

candidates for nested parallelization. Nested paralleli-
zation may then be turned on selectively and necessary

loop transformations can be performed. We are also

considering the automatic determination of an appro-

priate number of groups and the assignment of
different weights to the groups. Currently CAPO is
also being extended to support hybrid parallelism
which combines coarse-grained parallelization based

on message passing and fine-grained parallelization
based on directives.

OpenMP extensions are currently being imple-
mented in the framework of the NanosCompiler to

easily specify precedence relations causing pipelined
executions. These extensions are also valid in the scope

of nested parallelism. They are based on two compo-
nents:

• The ability to name work-sharing constructs (and
therefore reference any piece of work coming out

of it).

• The ability to specify predecessor and successor
relationships between named work-sharing con-

structs (PREC and SUCC clauses).

This avoids the manual transformation of the loop

to access data slices and manual insertion of synchro-
nization calls. From the new directives and clauses, the

compiler automatically builds synchronization data
structures and insert synchronization actions following

the predecessor and successor relationships defined [8].
These relationships can cross the boundaries of parallel

loops and therefore avoid the problems that CAPO
currently has to implement two-dimensional pipelines.

We plan to conduct further case studies to compare
the performance of parallelization based on nested
OpenMP directives with hybrid and pure message

passing parallelism.
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